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Abstract—With the advancement of drone technology, drone
swarms play a vital role in various applications. In drone swarms,
path planning is crucial for ensuring both the efficiency and
safety of swarm operations. However, in dynamic environments,
communication delays may lead to instability and inefficiency in
path planning. This paper addresses this issue by proposing a
drone swarm path planning algorithm that takes communication
delays into account. By analyzing the impact of communication
delays on path planning and designing corresponding strategies
to optimize the planning process, this algorithm aims to enhance
the efficiency and safety of drone swarm operations. Through
experimental validation, our computation time is reduced by
10.24%, proving the efficiency of the proposed method.

Index Terms—drone swarm, path planning, communication
delay, dynamic environments, topological planning

I. INTRODUCTION

In recent years, unmanned aerial vehicles (UAVs) have
garnered significant interest in the robotics community due to
their mobility, agility, and flexibility. These capabilities enable
UAVs operate autonomously in challenging environments that
may be hazardous or inaccessible to human operators [1].
Many novel approaches have been proposed and validated in
the real world. Some of these methods are centralized [2] [3]
[4], while others are distributed [5] [6] [7]. The centralized
approach involves a single machine planning the trajectory for
each agent, whereas the decentralized approach enables each
agent to plan its trajectory independently, providing robustness
against potential failures of the centralized machine.

In the past, some centralised algorithms have used global
MILFP [8] and SCP [9] methods, which are based on local
optimization, to address UAV planning problems. However,
as the number of drones increases, the issue becomes more
complicated. Limited by computational power, these methods
often cannot be applied effectively. Consequently, some schol-
ars have proposed distributed motion planning methods, which
offer good scalability. Tordesillas et al. [5] achieved motion
planning for UAV clusters in dynamic dense environments
by representing obstacles and UAVs as convex polyhedra and
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Fig. 1. Four quadrotors fly in simulation. Each color is associated with
different topology trajectory.

then decomposing the convex polyhedra into an optimisation
problem to be solved with collision detection operations. Zhou
et al. [7] proposed a decentralized and asynchronous system
solution for collision avoidance by formulating the collision
risk as a penalty in a non-linear optimisation problem, enabling
drone swarms autonomous navigation in unknown, obstacle-
rich scenarios using only on-board resources. Honig et al.
[10] proposed a multi-robot trajectory planning method by
first generating roadmaps in space through sampling, followed
by generating feasible paths in discrete time and space using
search to obtain the roadmaps and achieving smooth and
continuous trajectories through continuous optimization. They
also conducted test experiments using 32 quadrotors.

Distributed algorithms implemented by means of optimiza-
tion tend to fall into local minima, which in turn leads to
the final generated trajectories not being globally optimal.
Secondly, when the number of UAVs increases, it is often easy
to lead to the failure of path planning because UAVs all tend
to follow the path with the least cost. In order to solve this,
several researchers have introduced the concept of topological
planning into motion planning.

Rosmann et al. [11] introduce a method utilizing distinctive



topologies through Voronoi and sampling-based approaches.
However, it is significantly more straightforward in 3-D
contexts. To capture unique and beneficial paths, Jaillet et
al. [12] develop visibility deformation roadmaps that encode
richer and more pertinent information compared to typical
paths for homology classes. Zhou et al. [13] introduced an
efficient topological equivalence checking method for real-
time topology planning.

In distributed algorithms, communication between drones
is particularly important. Although the above-mentioned dis-
tributed algorithms are decentralized in the planning algo-
rithm, agents may still require a centralized communication
architecture. The current common method often idealizes
communication conditions, assuming that data transmission
between drones is completed immediately, without delay or
loss. However, in real swarm systems, delays often occur dur-
ing communication due to hardware limitations. These delays
can be detrimental for multiple drones to avoid obstacles from
one another [14]. Kondo et al. [15] introduced the idea of
DC (Delay Check), where each trajectory is checked for a
period of time after generation to ensure that no new tracks
are released during that time; if no new tracks are released,
the trajectory is considered safe to execute. This method is
clever, but with a large number of drones, it can often lead to
situations where DC always returns false. Therefore, for large
UAV swarms, this paper adopts the CDD (Communication
Delay Danger) method, which checks only the agents in the
CDD during DC, thus effectively enabling rapid planning of
UAV swarms.

Therefore, this paper primarily focuses on effectively con-
ducting cluster path planning to enhance robustness and secu-
rity while considering communication delays.

In this study, a distributed asynchronous framework is em-
ployed to transform the UAV cluster motion planning problem
into an optimization problem. The concept of topological paths
is utilized to increase the planning success rate. Before a
UAV executes a trajectory, other UAVs within the cluster are
monitored to mitigate the effects of communication delays.
For large UAV swarms, we adopt the CDD method (Commu-
nication Delay Danger), which selectively checks agents in the
CDD during DC, thereby facilitating rapid planning of UAV
swarms.

We summarize our contributions as follows:

1) In the front-end of UAV cluster path planning, collision
possibilities is reduced by using topologically different
definitions, thus reducing the number of re-planning and
greatly improving the success rate of planning;

2) After the UAV completes the trajectory planning, the
delay detection method is adopted, thus avoiding the
impact on the UAV cluster due to the communication
delay of the actual system;

3) The algorithm proposed in this paper is validated through
simulation experiments.

II. PRELIMINARIES

A. Motion Planning Preliminaries

Consider a swarm containing n drones, The UAV cluster
motion planning problem can be formulated as finding N safe,
dynamically constrained trajectories f i : [0, T ] → R3 that
satisfy the dynamics constraints in an environment F = (W \
(
∪

hOh)) bounded by W and containing convex obstacles
O1, . . . ,ONobs

. where f i denotes the trajectory of the i th
UAV, and T ∈ R > 0 is the total time.

B. UAV Model

The UAV studied in this paper is a quadrotor, characterized
as an underactuated system. It is controlled using four inputs,
corresponding to the magnitudes of the thrust generated by
its four rotors, to manage its six degrees of translational and
rotational freedom [16].

Fig. 2. where fi represents the propeller lift.{⃗i1, i⃗2, i⃗3} represents inertial
reference frame, {⃗b1, b⃗2, b⃗3} represents body reference frame,R ∈ SO(3)
represents the rotation matrix.

Fig. 2 depicts the dynamical model of a quadrotor. The
motion of a UAV can be decomposed into translational motion
of its center of mass and rotational motion about its center of
mass. By applying the Newton-Euler equations, the motion
model of a UAV can be formulated as follows:

ẋ = v, (1)
mv̇ = mge3 − fRe3, (2)

Ṙ = RΩ̂, (3)

JΩ̇ + Ω× JΩ = M (4)

where x ∈ R3 represents the position, v ∈ R3 represents the
velocity, m ∈ R represents the mass, g ∈ R represents the
gravitational constant, f ∈ R represents the propeller lift, e3
represents the inertial coordinate system, Ω ∈ R3 stands for
angular velocity, J ∈ R3×3 stands for inertia matrix.

III. LOCAL PLANNING
UAV motion planning often uses two steps: Front-end path

search and Back-end trajectory optimisation. Typically,
after obtaining an optimal path from the front-end search,
a smooth trajectory is generated that satisfies dynamic con-
straints and can be directly executed by the UAV. Even with



the information on the shortest path, the trajectory obtained
from the search often lacks higher-order information such
as velocity and acceleration, which are crucial for accurately
reflecting real-world motion dynamics. Consequently, the gen-
erated trajectory may not meet the operational requirements.

In [13], the Uniform Visibility Deformation (UVD) is
defined to capture topologically distinct and beneficial trajec-
tories, proving effective for equivalence checking. Similarly,
we adopt the UVD definition to differentiate between topolog-
ically distinct paths. Fig. 3 illustrates an example where three
paths belong to two different classes.

Fig. 3. An illustration of UVD. ϕ2is distinct to the ϕ1, but is equivalent to
the ϕ3.

Two traces ϕ1(s), ϕ2(s) parameterized by s ∈ [0, 1] satisfy
ϕ1(0) = τ2(0), ϕ1(1) = ϕ2(0), and for any moment s, the
lines ϕ1(s)ϕ2(s) of the two trajectories are conflict-free, then
the two trajectories belong to the same topological path, and
vice versa, they belong to paths with different topologies. After
defining the UVD, the generation of topological paths can be
done by sampling-based algorithms such as PRM or RRT. How
to generate topological paths has been described in detail in
[13], and will not be repeated in this paper.

Suppose there are n drones, each with m topological
paths. We use Pn,m to represent one of these paths. When
generating topological paths, the position information of other
UAVs is not taken into account, so the generated trajectories
may have collisions. Fig. 4 provides an overview of this
situation, where P1,2 collide with P2,4, P1,3 collide with
P2,3 etc. Such trajectories consume unnecessary time in the
later trajectory optimisation process, so we use an advanced
detection technique to detect collisions after generating the
discrete topological map. The specific algorithm is Alg. 1,
which removes colliding trajectories by loops.

Similar to previous work [13], we utilize a B-spline curve
to represent the UAV trajectory. A B-spline is a piecewise
polynomial uniquely determined by its degree pb, a set of
N + 1control points{Q0, Q1, · · · , QN} and a knot vector
{t0, t1, · · · , tM}, in which Qi ∈ R3, tm ∈ R and M =
N + pb + 1.

For each UAV, the trajectory generation problem is a process
of solving for the minimum of an objective function. The
objective function is slightly different than when solving for
single UAV trajectory planning, requiring the addition of an
intra-cluster penalty term so that no collisions occur within the
swarm. We use Φi to denote the trajectory of each drone.To
obtain the optimal trajectory, we can solve the following

Fig. 4. There is a collision between the paths obtained by the two UAVs via
topological path search.

Algorithm 1 Pure
Input: UAV number n, topo path Pn,m

1: Initialize()
2: for i = 1 : n− 1 do
3: for j = 1 : m do
4: for k = i+ 1 : n do
5: for l = 1 : m do
6: if Pi,j and Pk,l is collision then
7: Pi,j .pop
8: end if
9: end for

10: end for
11: end for
12: end for

optimization problem:

min
Q

Ji = λsJs + λcJc + λdJd + λwJw (5)

where Js stands for the smoothness of the trajectory, Jc for
the safety of the trajectory, and Jd for the feasibility of the
trajectory,and Jw stands for the safety of the cluster. The
details of how to solve for Js,Jc and Jd will not be repeated
here, more details can be found in [17]. Here we give the
formula for calculating Jw :

Jw,i =
∑
k

∫ te

t=ts

{
dk,i(t)

2

0
dt,

dk,i(t) < 0
dk,i(t) ≥ 0

(6)

dk,i(t) = ||E1/2 [Φk(t)−Φi(t)] || − C (7)

where k stands for other drones, C stands for thresholds,
and different thresholds can meet different needs, E :=
diag(1, 1, 1/c), c > 1 transforms Euclidean distance into
ellipsoidal distance.

After obtaining all the gradients of the optimization vari-
ables using the above approaches, the problem is then effi-
ciently solved with the non-linear optimization solver NLopt.1

1https://nlopt.readthedocs.io/en/latest/



IV. ELIMINATE COMMUNICATION LATENCY

Some current approaches usually assume that communica-
tion between UAVs is without delay and that trajectories gen-
erated by one UAV completing planning can be immediately
accepted by other UAVs and applied in optimized trajectory
generation.

However, in practice, due to the limitations of communi-
cation technology, there is often a delay in communication
between UAVs, resulting in the inability to use the real-time
trajectory information of other UAVs as constraint to achieve
conflict cancellation in path planning. Fig. 6 illustrates an
example of collisions due to communication delays.

In order to address the impact of communication delays,
Kondo et al. [15] proposes an idea of delay detection. When
a UAV generates an executable trajectory through the front-end
and back-end, the system does not immediately feed it to the
UAV hardware for execution but instead detects if it receives
a plan issued by another UAV over a period of time (δdelay ,
where δdelay is the maximum delay time). Because of the
communication delay, the received planning is not considered
during path planning. Therefore, if no other UAV is detected
posting a trajectory for a sustained period of time, the opti-
mized trajectory can be considered safe and the computation
can be sent to the UAV for execution. If there are other
UAVs posting within δdelay time, the optimized trajectory is
considered to be risky and requires further processing.

A. CDD(Communication Delay Danger) Definition

This method solves the effect of communication delay very
well, but its actual execution will detect whether all drones
release new trajectories within δdelay , so it will lead to many
cases that the optimized trajectory is considered to be risky,
resulting in frequent hovering of the drone. Therefore, in this
paper, we first define CDD: Considering the UAV danger area
in the case of communication delay, only the UAVs within the
danger area will be detected during the subsequent detection.
By defining the CDD, the number of UAV stops can be
effectively reduced, thus reducing the overall planning time.

Algorithm 2 CCD Check
1: Function CCD CHECK(xi)
2: for all UAVs do
3: if d < 2xmax then
4: C.add(UAV)
5: end if
6: end for

First, we propose a definition of the Communication Delay
Danger (CDD). When UAVs are flying in swarms, not all of
them have communication delays that have a significant impact
on planning. Therefore we need to determine the extent of the
region of UAVs that may have an impact on planning. There
exists a notion of a maximum CDD when UAVs are planning
at maximum speed vmax as well as maximum delay time
tmax , we define it as follows: C = { xi |d ≤ 2xmax} where
d represents the distance between the known UAV trajectory

endpoints: d = Φ1(te)−Φ2(te). where xmax = vmax× tmax

represents the distance that the UAVs can move under the time
of maximum communication delay. Fig. 7 is a demonstration
of Communication Delay Danger.

When the distance between the two drones is greater than
2xmax, it can be assumed that no collision will occur even if
there is a communication delay. Therefore, in the planning, for
the communication delay, we only need to consider the UAVs
that are within the CDD region for consideration.

B. Delay Check

In an asynchronous planning framework, UAVs can publish
new trajectory information at any time, communication delays
exist making it impossible for UAVs to obtain the paths
published by other intelligences in the recent past, and the
situation becomes more complicated when the number of
UAVs increases. Therefore, additional steps need to be taken
to deal with communication delays and to ensure that newly
optimized paths do not conflict with paths recently published
by other agents Here we use DC for the processing, and the

Algorithm 3 Delay Check
1: while not reach goal do
2: traj1opt = OPT()
3: if CHECK(trajBopt

) == False then
4: Continue
5: end if
6: Publish trajBopt

7: if DELAY CHECK(traj1opt ) == False then
8: Keeps executing traj1comm

and go to Line 11
9: end if

10: trajBcomm
← trajBopt

11: Publish trajBcomm

12: end while

core idea is that the generated trajectories will be continuously
detected for δdelay to ensure that no new trajectories are
published during this time. The specific algorithm is shown
in Alg. 3.

V. SIMULATION

The architecture of the entire simulation platform is depicted
in Fig. 5. Taking a single UAV as an example, it acquires
sensor data, such as IMU readings and depth camera images,
from the simulation environment. The planner utilizes this data
to perform motion planning for the UAV and subsequently
shares the generated trajectories with other UAVs.

We execute our implementation on a PC running Ubuntu
20.04, equipped with a 13th Gen Intel(R) Core(TM) i9-
13900HX CPU and 32 GB of RAM. This CPU features 32
physical cores, significantly enhancing the runtime perfor-
mance for continuous tasks. Fig. 1 shows a snapshot of the
simulation process. We utilize an occupancy grid to represent
the environment, with a map size of 40 × 30 × 2m, The
resolution of the map is 0.2m . Grey squares denote randomly
generated obstacles, comprising 100 rectangular obstacles and



Fig. 5. System Architecture

Fig. 6. For UAV 1, the second half of UAV 2’s trajectory is not received
temporarily due to communication delays, and therefore often appears not to
be considered in the trajectory planning phase. Resulting in collision prone
at the end

50 circular obstacles. Fig. 8 provides a snapshot of the
simulation environment. The UAV model conforms to the
dynamics where vmax is 2m/s and amax is 2m/s2. The
generated trajectories are tracked using the dynamics model
of the UAV through the proposed in [18].

We simulated three UAVs flying from one side of the map
at a speed of 3m/s with a quadrotor radius of 0.2 m. Each UAV
independently perceives the environment, and the resulting
trajectories are visually distinguished by different colors. Fig.
9 illustrates the paths generated through planning.

We compared our work with method [7] and method [15],
as summarized in Table I, where the starting point and goal

Fig. 7. Communication Delay Danger

TABLE I
COMPARISONS OF PLANNING METHODS.

Delay Times
[ms] Method Collision Free

Rate [%]
Avg Number of

Stops[s]
Avg Travel
Times [s]

EGO-Swarm 38 0.075 4.67
δdelay = 20 RMADER 100 0.127 10.57

Ours 100 0.098 10.03
EGO-Swarm 25 0.075 4.67

δdelay = 50 RMADER 100 0.198 11.48
Ours 100 0.139 10.84

EGO-Swarm 22 0.075 4.67
δdelay = 100 RMADER 100 0.326 12.89

Ours 100 0.27 11.57



Fig. 8. Simulation environment.

Fig. 9. Three UAVs pass through an obstacle-heavy environment.

are the same. As shown in Table I, our method balances
the collision-free rate and the number of stops. Compared to
[7], our method achieves a higher success rate. Furthermore,
compared to [15], our method results in fewer stops and shorter
travel times.

VI. CONCLUSION
In this paper, we propose a distributed planer aimed at

generating feasible trajectories that consider communication
delays in unknown and dense environments. By restricting
conflict resolution between UAVs to the Communication Delay
Domain (CDD), we ensure the discovery of viable trajectories
within a limited timeframe. The CDD is defined by the maxi-
mum delay time and speed to guarantee security in cluster path
planning. Simulation experiments validate the effectiveness of
our approach. In future work, we plan to extend our method to
more complex scenarios, such as maze-like environments and
dynamic settings, and validate them in real-world applications.
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